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The Euler Phi Function

• An arithmetic function takes positive integers as inputs and produces real or complex numbers as
outputs.

• If f is an arithmetic function, the divisor sum Df(n) is the sum of the values of f at the positive
divisors of n.

• τ (n) is the number of positive divisors of n; σ(n) is the sum of the positive divisors of n.

• The Möbius function µ(n) is 1 if n = 1 and 0 if n has a repeated prime factor. Otherwise, it is (−1)k,
where k is the number of (distinct) prime factors.

• The Dirichlet product of arithmetic functions f and g is (f ∗ g)(n) =
∑

d|n

f(d)g
(n

d

)

.

• The Möbius inversion formula says that µ ∗Df = f .

• Dφ(n) = n.

• φ(n) = n ·
∏

p|n
p prime

(

1 −
1

p

)

.

• The Euler phi function is multiplicative: If (m, n) = 1, then φ(mn) = φ(m)φ(n).

I’m going to describe a formula for computing φ(n) which uses the prime factorization of n. This will
require some preliminaries on divisor sums.

Definition. An arithmetic function is a function defined on the positive integers which takes values in the
real or complex numbers.

Examples. (a) Define f : Z
+ → R by f(n) = sin n. Then f is an arithmetic function.

(b) The Euler phi function φ is an arithmetic function.

(c) Define τ : Z
+ → Z

+ by

τ (n) = (the number of positive divisors of n).

For example, τ (12) = 6, since there are 6 positive divisors of 12 — 1, 2, 3, 4, 6, and 12. τ is an arithmetic
function.

(d) Define σ : Z
+ → Z

+ by

σ(n) = (the sum of the positive divisors of n).

Since 1, 2, 3, 6, 9, and 18 are the positive divisors of 18,

σ(18) = 1 + 2 + 3 + 6 + 9 + 18 = 39.

σ is an arithmetic function.
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Definition. The Möbius function is the arithmetic function defined by µ(1) = 1, and for n > 1,

µ(n) =

{

(−1)k if n = pi · · · pk, pi distinct primes
0 otherwise

.

Thus, µ(n) = 0 if n is divisible by a square.

Example. µ(6) = 1, since 6 = 2 · 3. Likewise, µ(30) = −1, since 30 = 2 · 3 · 5. But µ(12) = 0 and µ(250 = 0.

Definition. If f is an arithmetic function, the divisor sum of f is

[D(f)](n) =
∑

d|n

f(d).

To save writing, I’ll make the convention that when I write “
∑

d|n

”, I mean to sum over all the positive

divisors of a positive integer n. Thus, the divisor sum of f evaluated at a positive integer n takes the positive
divisors of n, plugs them into f , and adds up the results.

Notice that the divisor sum is a function which takes an arithmetic function as input and produces an

arithmetic function as output.

Divisor Sum

f

arithmetic

function

The divisor sum machine takes in an arithmetic

function f.

Divisor Sum

f

With f installed in the divisor sum machine,

you get a new arithmetic function: D(f).

Divisor Sum

f

D(f) works by taking a number, applying f to each

divisor of the sum, and adding up the results.

6

f(1) + f(2) + f(3) + f(6)

1 2 3 6
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Example. Suppose f : Z
+ → Z

+ is defined by f(n) = n2. Then

[D(f)](n) =
∑

d|n

d2.

For example,

[D(f)](12) =
∑

d|12

d2 = 12 + 22 + 32 + 42 + 62 + 122 = 210.

Lemma.

[D(µ)](n) =
∑

d|n

µ(d) =
{

1 if n = 1
0 otherwise

Proof. The formula for n = 1 is obvious.
Suppose n > 1. Let

n = pr1

1 · · ·prk

k

be the factorization of n into distinct primes. What are the nonzero terms in the sum
∑

d|n

µ(d)? They will

come from d’s which are products of single powers of p1, . . . pk, and also d = 1.
For example, µ(p1p2p7) and µ(p2p4) would give rise to nonzero terms in the sum, but µ(p3

3p8) = 0.
So

∑

d|n

µ(d) = 1 + (µ(p1) + · · ·+ µ(pk)) + (µ(p1p2) + µ(p1p3) + · · ·+ µ(pk−1pk)) + · · ·+ µ(p1p2 · · ·pk) =

1 +

(

k

1

)

(−1) +

(

k

2

)

(−1)2 + · · ·+

(

k

k

)

(−1)k = (1 − 1)k = 0.

Example. Suppose n = 24. The divisor sum is

∑

d|24

µ(d) = µ(1) + µ(2) + µ(3) + µ(4) + µ(6) + µ(12) + µ(24) = 1 + (−1) + (−1) + 0 + 1 + 0 + 0 = 0.

Definition. If f and g are arithmetic functions, their Dirichlet product is

(f ∗ g)(n) =
∑

d|n

f(d)g
(n

d

)

.

Example. If f and g are arithmetic functions,

(f ∗ g)(12) = f(1)g(12) + f(2)g(6) + f(3)g(4) + f(4)(g(3) + f(6)g(2) + f(12)(g(1).

I’ll need two helper functions in what follows. Define

I(n) = 1 for all n ∈ Z
+,
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e(n) =
{

1 if n = 1
0 otherwise

for all n ∈ Z
+.

Properties of the Dirichlet product.

Let f , g, and h be arithmetic functions.

1. f ∗ g = g ∗ f .

2. (f ∗ g) ∗ h = f ∗ (g ∗ h).

3. f ∗ e = f = e ∗ f .

4. f ∗ I = Df = I ∗ f .

5. µ ∗ I = e.

Proof. For property 1, note that divisors of n come in pairs
{

d,
n

d

}

, and that if
{

d,
n

d

}

is a divisor pair, so

is
{n

d
, d

}

. This means that the same terms occur in both

(f ∗ g)(n) =
∑

d|n

f(d)g
(n

d

)

and (g ∗ f)(n) =
∑

d|n

g(d)f
(n

d

)

,

so they’re equal.
Associativity is a little tedious, so I’ll just note that [(f ∗ g) ∗ h](n) and [f ∗ (g ∗ h)](n) are equal to

∑

{d,e,f}

f(d)g(e)h(f),

where the sum runs over all triples of positive numbers d, e, f such that def = n. You can fill in the details.
For property 3, note that

(f ∗ e)(n) =
∑

d|n

f(d)e
(n

d

)

= f(n)e(1) = f(n).

(e
(n

d

)

is 0 except when
n

d
= 1, i.e. when d = n.)

For property 4,

(f ∗ I)(n) =
∑

d|n

f(d)I
(n

d

)

=
∑

d|n

f(d) · 1 =
∑

d|n

f(d) = (Df)(n).

For property 5, start with n = 1:

(µ ∗ I)(1) = µ(1)I(1) = 1 · 1 = 1 = e(1).

Now suppose n > 0. Then
(µ ∗ I)(n) = (Dµ)(n) = 0 = e(n).

Therefore, the formula holds for all n.

The next result is very powerful, but the proof will look easy with all the machinery I’ve collected.

Theorem. (Möbius Inversion Formula) If f is an arithmetic function, then f = µ ∗ Df .

Proof.

µ ∗ Df = µ ∗ I ∗ f = e ∗ f = f.

Next, I’ll compute the divisor sum of the Euler phi function.
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Lemma.

[D(φ)](n) =
∑

d|n

φ(d) = n.

Proof. Let n be a positive integer. Construct the fractions

1

n
,

2

n
, . . . ,

n − 1

n
,

n

n
.

Reduce them all to lowest terms. Consider a typical lowest-term fraction
a

d
. Here d | n (because it

came from a fraction whose denominator was n, a < d (because the original fraction was less than 1), and
(a, d) = 1 (because it’s in lowest terms).

Notice that (going the other way) if
a

d
is a fraction with positive top and bottom which satisfies d | n,

a < d, and (a, d) = 1, then it is one of the lowest-terms fractions. For dk = n for some k, and then
a

d
=

ka

kd
=

ka

n
— and the last fraction is one of the original fractions.

How many of the lowest-terms fractions have “d” on the bottom? Since the “a” on top is a positive
number relatively prime to d, there are φ(d) such fractions. Summing over all d’s which divide n gives
∑

d|n

φ(d). But since every lowest-terms fraction has some such “d” on the bottom, this sum accounts for all

the fractions — and there are n of them. Therefore,
∑

d|n

φ(d) = n.

Example. Suppose n = 6. Then

∑

d|6

φ(d) = φ(1) + φ(2) + φ(3) + φ(6) = 1 + 1 + 2 + 2 = 6.

Lemma. Let n ≥ 1.

φ(n) =
∑

d|n

µ(d)
n

d
.

Proof. By Möbius inversion and the previous result,

φ(n) = (µ ∗ Dφ)(n) =
∑

d|n

µ(d)Dφ
(n

d

)

=
∑

d|n

µ(d)
n

d
.

Example. Take n = 6, so φ(6) = 2.

∑

d|6

µ(d)
6

d
= µ(1) ·

6

1
+ µ(2) ·

6

2
+ µ(3) ·

6

3
+ µ(6) ·

6

6
=

(1)(6) + (−1)(3) + (−1)(2) + (1)(1) = 2.

Theorem. Let n ≥ 1.

φ(n) = n ·
∏

p|n
p prime

(

1 −
1

p

)
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(By convention, the empty product — the product with no terms — equals 1.)

Proof. If n = 1, the result is immediate by convention.
If n > 1, let p1, . . . , pk be the distinct prime factors of n. Then

∏

p|n
p prime

(

1 −
1

p

)

=

(

1 −
1

p1

)(

1 −
1

p2

)

· · ·

(

1 −
1

pk

)

=

1 −
∑

i

1

pi

+
∑

i 6=j

1

pipj

− · · ·+ (−1)k 1

p1p2 · · ·pk

.

Each term is ±
1

d
, where d is 1 (the first term) or a product of distinct primes. The (−1)i in front of each

term alternates signs according to the number of p’s — which is exactly what the Möbius function does. So
the expression above is

∑

d|n

µ(d)

d
.

(I can run the sum over all divisors, because µ(d) = 0 if d has a repeated prime factor.) Now simply
multiply by n:

n ·
∏

p|n
p prime

(

1 −
1

p

)

=
∑

d|n

µ(d)
n

d
= φ(n).

Example. 40 = 23 · 5, so

φ(40) = 40

(

1 −
1

2

)(

1 −
1

5

)

= 16.

Likewise, 81 = 34, so

φ(81) = 81 ·

(

1 −
1

3

)

= 54.

More generally, if p is prime and k ≥ 1, then

φ(pk) = pk − pk−1.

For

φ(pk) = pk ·

(

1 −
1

p

)

= pk − pk−1.

Definition. An arithmetic function f is multiplicative if (m, n) = 1 implies

f(mn) = f(m)f(n).

Lemma. φ is multiplicative — that is, if (m, n) = 1, then

φ(mn) = φ(m)φ(n).

Proof. Suppose (m, n) = 1. Now

φ(m) = m ·
∏

p|m
p prime

(

1 −
1

p

)

and φ(n) = n ·
∏

q|n
q prime

(

1 −
1

q

)

.
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So

φ(m)φ(n)

mn
=







∏

p|m
p prime

(

1 −
1

p

)













∏

q|n
q prime

(

1 −
1

q

)






.

Since (m, n) = 1, the two products have no primes in common. Moreover, the primes that appear in
either of the products are exactly the prime factors of mn. So

φ(m)φ(n)

mn
=

∏

r|mn

r prime

(

1 −
1

r

)

.

Hence,

φ(m)φ(n) = (mn) ·
∏

r|mn

r prime

(

1 −
1

r

)

= φ(mn).

Example. If n ≥ 3, then φ(n) is even. In fact, if n has k odd prime factors, then 2k | φ(n).
To see this, observe first that

φ(2k) = 2k − 2k−1.

This is even if 2k ≥ 4.
So suppose that n has k odd prime factors. Then

φ(n) = n ·
∏

p|n
p prime

(

1 −
1

p

)

= φ(n) = n ·
∏

p|n
p prime

(

p − 1

p

)

=
n

∏

p|n
p prime

p

∏

p|n
p prime

(p − 1) .

The denominator of the fraction is the product of primes dividing n, so the fraction is actually an
integer. The second term has at least one even factor for each odd prime dividing n, because if p is an odd
prime then p − 1 is even. Hence, the second term — and therefore φ(n) — is divisible by 2k.

For example, consider 7623 = 32 · 7 · 112. There are 3 odd prime factors, so φ(7623) should be divisible
by 8. And in fact, φ(7623) = 3960 = 8 · 495.
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7-31-2006

The Sum and Number of Divisors

Definition. The sum of divisors function is given by

σ(n) =
∑

d|n

d.

The number of divisors function is given by

τ (n) =
∑

d|n

1.

Example. Recall that a number is perfect if it’s equal to the sum of its divisors other than itself. It follows
that a number n is perfect if σ(n) = 2n.

Example.

σ(15) = 1 + 3 + 5 + 15 = 24 and τ (15) = 4.

I want to show that σ and τ are multiplicative. I can do most of the work in the following lemma.

Lemma. The divisor sum of a multiplicative function is multiplicative.

Proof. Suppose f is multiplicative, and let D(f) be the divisor sum of f . Suppose (m, n) = 1. Then

[D(f)](m) =
∑

a|m

f(a) and [D(f)](n) =
∑

b|n

f(b).

Then

[D(f)](m) · [D(f)](n) =





∑

a|m

f(a)









∑

b|n

f(b)



 =
∑

a|m

∑

b|n

f(a)f(b).

Now (m, n) = 1, so if a | m and b | n, then (a, b) = 1. Therefore, multiplicativity of f implies

[D(f)](m) · [D(f)](n) =
∑

a|m

∑

b|n

f(ab).

Now every divisor d of mn can be written as d = ab, where a | m and b | n. Going the other way, if
a | m and b | n then ab | mn. So I may set d = ab, where d | mn, and replace the double sum with a single
sum:

[D(f)](m) · [D(f)](n) =
∑

d|mn

f(ab) = [D(f)](mn).

This proves that D(f) is multiplicative.

Example. The identity function id(x) = x is multiplicative: id(mn) = mn = id(m) · id(n) for all m, n (so a

fortiori for (m, n) = 1). Therefore, the divisor sum of id is multiplicative. But

[D(id)](n) =
∑

d|n

id(d) =
∑

d|n

d = σ(n).

1

chenvictor
Rectangle

victor
Highlight

victor
Highlight



Hence, the sum of divisors function σ is multiplicative.

Example. The constant function I(n) = 1 is multiplicative: I(mn) = mn = I(m) · I(n) for all m, n (so a

fortiori for (m, n) = 1). Therefore, the divisor sum of I is multiplicative. But

[D(I)](n) =
∑

d|n

I(d) =
∑

d|n

1 = τ (n).

Hence, the number of divisors function τ is multiplicative.

I’ll use multiplicativity to obtain formulas for σ(n) and τ (n) in terms of their prime factorizations (as I
did with φ). First, I’ll get the formulas in the case where n is a power of a prime.

Lemma. Let p be prime. Then:

σ(pk) =
pk+1 − 1

p − 1

τ (pk) = k + 1

Proof. The divisors of pk are 1, p, p2, . . . , pk. So the sum of the divisors is

σ(pk) = 1 + p + p2 + · · ·+ pk =
pk+1 − 1

p − 1
.

And since the divisors of pk are 1, p, p2, . . . , pk, there are k + 1 of them, and

τ (pk) = k + 1.

Theorem. Let n = pr1

1 · · · prk

k , where the p’s are distinct primes and ri ≥ 1 for all i. Then:

σ(n) =

(

pr1+1

1 − 1

p1 − 1

)

· · ·

(

prk+1

k − 1

pk − 1

)

τ (n) = (r1 + 1) · · · (rk + 1)

Proof. These results follow from the preceding lemma, the fact that σ and τ are multiplicative, and the fact
that the prime power factors pri

i are pairwise relatively prime.

Here is a graph of σ(n) for 1 ≤ n ≤ 1000.
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Note that if p is prime, σp = p +1. This gives the point (p, p +1), which lies on the line y = x +1. This
is the line that you see bounding the dots below.

Here is a graph of τ (n) for 1 ≤ n ≤ 1000.

200 400 600 800 1000

5

10

15

20

25

30

If p is prime, τ (p) = 2. Thus, τ repeatedly returns to the horizontal line y = 2, which you can see
bounding the dots below.

Example. 720 = 24 · 32 · 5, so

σ(720) =

(

25 − 1

2 − 1

)(

33 − 1

3 − 1

)(

52 − 1

5 − 1

)

= 2418,

τ (720) = (4 + 1)(2 + 1)(1 + 1) = 30.

Example. For each n, there are only finitely many numbers k whose divisors sum to n: σ(k) = n. For k

divides itself, so
n = σ(k) = (junk) + k > k.

This says that k must be less than n. So if I’m looking for numbers whose divisors sum to n, I only
need to look at numbers less than n. For example, if I want to find all numbers whose divisors sum to 42, I
only need to look at {1, 2, . . . , 41}.

c©2006 by Bruce Ikenaga 3
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7-31-2006

Perfect Numbers

Definition. A number n > 0 is perfect if σ(n) = 2n. Equivalently, n is perfect if it is equal to the sum of
its divisors other than itself.

Example. 6 is perfect, because

6 = 1 + 2 + 3, or 2 · 6 = 1 + 2 + 3 + 6.

It is not known whether there are any odd perfect numbers, or whether there are infinitely many even
perfect numbers. The existence of infinitely many even perfect numbers is related to the existence of infinitely
many Mersenne primes by the following result.

Proposition. n is an even perfect number if and only if n = 2k−1(2k − 1), where 2k − 1 is a Mersenne prime.

Proof. First, suppose 2k − 1 is prime. Then n = 2k−1(2k − 1) is even; I want to show that it’s perfect. Since
2k − 1 is an odd prime, it is relatively prime to 2k−1. Hence,

σ(n) = σ
(

2k−1(2k − 1)
)

= σ
(

2k−1
)

σ
(

2k − 1
)

=

(

2k − 1

2 − 1

) (

(2k − 1)2 − 1

(2k − 1) − 1

)

=

(2k − 1)
(

(2k − 1) + 1
)

= (2k − 1)2k = 2 · 2k−1(2k − 1) = 2n.

Therefore, n is perfect.
Conversely, suppose n is an even perfect number. I want to show n = 2k−1(2k − 1), where 2k − 1 is a

Mersenne prime.
Since n is even, I can write n = 2im, where i ≥ 1 and m is odd. Then

2i+1m = 2n = σ(n) = σ(2im) = σ(2i)σ(m) = (2i+1 − 1)σ(m).

Since 2i+1 divides the left side, it divides the right side. But 2i+1 −1 is odd, so I must have 2i+1 | σ(m).
I claim further that 2i+1 is the highest power of 2 which divides σ(m). For if 2i+2 | σ(m), then

2i+1m = (2i+1 − 1)σ(m) = (2i+1 − 1) · 2i+2 · junk.

Hence, m = (2i+1 − 1) · 2 · junk, which contradicts the fact that m is odd.
Since I now know that 2i+1 is the highest power of 2 which divides σ(m), I can write σ(m) = 2i+1s,

where s is odd. Then

2i+1m = (2i+1 − 1)σ(m) = (2i+1 − 1) · 2i+1s, so m = (2i+1 − 1)s.

Hence,
n = 2im = 2i(2i+1 − 1)s.

If I can show s = 1, then I will have gotten n to have the right form.
To do this, start with m = (2i+1 − 1)s. Add s to both sides to get

m + s = 2i+1s = σ(m).

m is divisible by 1, by itself, and by s (because m = (2i+1 − 1)s). If s = m, then

n = 2im = 2i(2i+1 − 1)s = 2i(2i+1 − 1)m, so 1 = 2i+1 − 1.
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This implies i = 0 տր. So s 6= m. If in addition s > 1, then 1, s, and m are three distinct divisors of m,
so

σ(m) ≥ m + s + 1.

This contradicts m + s = σ(m), derived above. Therefore, s = 1.
At this point, I know n = 2i(2i+1 − 1). I only need to show that 2i+1 − 1 is prime. Since 1 and 2i+1 − 1

are distinct factors of 2i+1 − 1, I have

2i+1 = σ(m) = σ(2i+1 − 1) ≥ 1 + (2i+1 − 1) = 2i+1.

Therefore, σ(2i+1 − 1) = 2i+1. But this means that 1 and 2i+1 − 1 are the only factors of 2i+1 − 1, i.e.
2i+1 − 1 is prime.

Example. 27 − 1 = 127 is prime, so
26(27 − 1) = 8128

is perfect.

I now know that finding even perfect numbers is equivalent to finding Mersenne primes — primes of the
form 2n − 1. I showed earlier that 2n − 1 is prime implies that n is prime. So to look for Mersenne primes,
I only need to look at 2n − 1 for n prime. Next, I’ll derive a result which simplifies checking that 2n − 1 is
prime. First, here’s an amusing lemma.

Lemma. (2a − 1, 2b − 1) = 2(a,b) − 1.

Proof. Assume without loss of generality that a ≥ b. The greatest common divisor of two numbers doesn’t
change if I subtract the smaller from the larger, so

(2a − 1, 2b − 1) =
(

(2a − 1) − (2b − 1), 2b − 1
)

= (2a − 2b, 2b − 1) = (2b(2a−b − 1), 2b − 1).

Since 2b − 1 is odd, it has no factors in common with the 2b in the first term. So

(2b(2a−b − 1), 2b − 1) = (2a−b − 1, 2b − 1).

Now I see that the “2(·) − 1” in each slot is just along for the ride: All the action is taking place in
the exponents. And what is happening is that the subtraction algorithm for computing greatest common
divisors is operating in the exponents! — the original pair a, b, was replaced by a − b, b.

It follows that the exponents will “converge” to (a, b), because this is what the subtraction algorithm
does. And when the algorithm terminates, I’ll have (2(a,b) − 1, 0) = 2(a,b) − 1, proving the result.

Example. (42, 54) = 6, so
(242 − 1, 254 − 1) = 26 − 1 = 63.

This is surely not obvious, especially when you consider that 242 − 1 = 4398046511103 and 254 − 1 =
18014398509481983!

Theorem. Let p be an odd prime. Every factor of 2p − 1 has the form 2kp + 1 for some k ≥ 0.

Proof. It suffices to prove that the result holds for prime factors of 2p − 1. For

(2ap + 1)(2bp + 1) = 2(2abp + a + b)p + 1,
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so products of numbers of the form 2kp + 1 also have that form.
Suppose then that q is a prime factor of 2p − 1. Little Fermat says q | 2q−1 − 1. The preceding lemma

implies that
(2p − 1, 2q−1 − 1) = 2(p,q−1) − 1.

Now q | 2p − 1 and q | 2q−1 − 1 implies q | 2(p,q−1) − 1. In particular, 2(p,q−1) − 1 > 1, since it’s
divisible by the prime q. This in turn implies that (p, q − 1) > 1. Now p is prime, so this is only possible if
(p, q − 1) = p. In particular, p | q − 1.

Write q− 1 = tp, so q = tp + 1. q is odd, so q− 1 is even, and tp is even. Since p is odd, t must be even:
t = 2k for some k. Then q = 2kp + 1, which is what I wanted to show.

Example. Is 217 − 1 = 131071 prime?
√

131071 ≈ 362. If 217 − 1 has a proper prime factor, it must have
one less than 362, and the prime factor must have the form 2k · 17 + 1 = 34k + 1. So I need to check the
primes less than 362 to see if they divide 131071.

k 34k + 1

1 35 Not prime

2 69 Not prime

3 103 103 6 | 131071

4 137 137 6 | 131071

5 171 Not prime

6 205 Not prime

7 239 239 6 | 131071

8 273 Not prime

9 307 307 6 | 131071

10 341 Not prime

Therefore, 217 − 1 is prime.
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